Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Position-Sensing Graph Neural Networks: Proactively Learning Nodes Relative Positions (2105.11346v2)

Published 24 May 2021 in cs.LG

Abstract: Most existing graph neural networks (GNNs) learn node embeddings using the framework of message passing and aggregation. Such GNNs are incapable of learning relative positions between graph nodes within a graph. To empower GNNs with the awareness of node positions, some nodes are set as anchors. Then, using the distances from a node to the anchors, GNNs can infer relative positions between nodes. However, P-GNNs arbitrarily select anchors, leading to compromising position-awareness and feature extraction. To eliminate this compromise, we demonstrate that selecting evenly distributed and asymmetric anchors is essential. On the other hand, we show that choosing anchors that can aggregate embeddings of all the nodes within a graph is NP-complete. Therefore, devising efficient optimal algorithms in a deterministic approach is practically not feasible. To ensure position-awareness and bypass NP-completeness, we propose Position-Sensing Graph Neural Networks (PSGNNs), learning how to choose anchors in a back-propagatable fashion. Experiments verify the effectiveness of PSGNNs against state-of-the-art GNNs, substantially improving performance on various synthetic and real-world graph datasets while enjoying stable scalability. Specifically, PSGNNs on average boost AUC more than 14% for pairwise node classification and 18% for link prediction over the existing state-of-the-art position-aware methods. Our source code is publicly available at: https://github.com/ZhenyueQin/PSGNN.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com