Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction Polynomial: the Ratio Net (2105.11309v2)

Published 18 May 2021 in cs.LG, cs.NA, and math.NA

Abstract: Recent advances in solving ordinary differential equations (ODEs) with neural networks have been remarkable. Neural networks excel at serving as trial functions and approximating solutions within functional spaces, aided by gradient backpropagation algorithms. However, challenges remain in solving complex ODEs, including high-order and nonlinear cases, emphasizing the need for improved efficiency and effectiveness. Traditional methods have typically relied on established knowledge integration to improve problem-solving efficiency. In contrast, this study takes a different approach by introducing a new neural network architecture for constructing trial functions, known as ratio net. This architecture draws inspiration from rational fraction polynomial approximation functions, specifically the Pade approximant. Through empirical trials, it demonstrated that the proposed method exhibits higher efficiency compared to existing approaches, including polynomial-based and multilayer perceptron (MLP) neural network-based methods. The ratio net holds promise for advancing the efficiency and effectiveness of solving differential equations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.