Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FaaSNet: Scalable and Fast Provisioning of Custom Serverless Container Runtimes at Alibaba Cloud Function Compute (2105.11229v3)

Published 24 May 2021 in cs.DC

Abstract: Serverless computing, or Function-as-a-Service (FaaS), enables a new way of building and scaling applications by allowing users to deploy fine-grained functions while providing fully-managed resource provisioning and auto-scaling. Custom FaaS container support is gaining traction as it enables better control over OSes, versioning, and tooling for modernizing FaaS applications. However, providing rapid container provisioning introduces non-trivial challenges for FaaS providers, since container provisioning is costly, and real-world FaaS workloads exhibit highly dynamic patterns. In this paper, we design FaaSNet, a highly-scalable middleware system for accelerating FaaS container provisioning. FaaSNet is driven by the workload and infrastructure requirements of the FaaS platform at one of the world's largest cloud providers, Alibaba Cloud Function Compute. FaaSNet enables scalable container provisioning via a lightweight, adaptive function tree (FT) structure. FaaSNet uses an I/O efficient, on-demand fetching mechanism to further reduce provisioning costs at scale. We implement and integrate FaaSNet in Alibaba Cloud Function Compute. Evaluation results show that FaaSNet: (1) finishes provisioning 2500 function containers on 1000 virtual machines in 8.3 seconds, (2) scales 13.4x and 16.3x faster than Alibaba Cloud's current FaaS platform and a state-of-the-art P2P container registry (Kraken), respectively, and (3) sustains a bursty workload using 75.2% less time than an optimized baseline.

Citations (92)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.