Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust learning with anytime-guaranteed feedback (2105.11135v1)

Published 24 May 2021 in stat.ML and cs.LG

Abstract: Under data distributions which may be heavy-tailed, many stochastic gradient-based learning algorithms are driven by feedback queried at points with almost no performance guarantees on their own. Here we explore a modified "anytime online-to-batch" mechanism which for smooth objectives admits high-probability error bounds while requiring only lower-order moment bounds on the stochastic gradients. Using this conversion, we can derive a wide variety of "anytime robust" procedures, for which the task of performance analysis can be effectively reduced to regret control, meaning that existing regret bounds (for the bounded gradient case) can be robustified and leveraged in a straightforward manner. As a direct takeaway, we obtain an easily implemented stochastic gradient-based algorithm for which all queried points formally enjoy sub-Gaussian error bounds, and in practice show noteworthy gains on real-world data applications.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)