Emergent Mind

Robust learning with anytime-guaranteed feedback

(2105.11135)
Published May 24, 2021 in stat.ML and cs.LG

Abstract

Under data distributions which may be heavy-tailed, many stochastic gradient-based learning algorithms are driven by feedback queried at points with almost no performance guarantees on their own. Here we explore a modified "anytime online-to-batch" mechanism which for smooth objectives admits high-probability error bounds while requiring only lower-order moment bounds on the stochastic gradients. Using this conversion, we can derive a wide variety of "anytime robust" procedures, for which the task of performance analysis can be effectively reduced to regret control, meaning that existing regret bounds (for the bounded gradient case) can be robustified and leveraged in a straightforward manner. As a direct takeaway, we obtain an easily implemented stochastic gradient-based algorithm for which all queried points formally enjoy sub-Gaussian error bounds, and in practice show noteworthy gains on real-world data applications.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.