Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A hybrid classification-regression approach for 3D hand pose estimation using graph convolutional networks (2105.10902v1)

Published 23 May 2021 in cs.CV and cs.AI

Abstract: Hand pose estimation is a crucial part of a wide range of augmented reality and human-computer interaction applications. Predicting the 3D hand pose from a single RGB image is challenging due to occlusion and depth ambiguities. GCN-based (Graph Convolutional Networks) methods exploit the structural relationship similarity between graphs and hand joints to model kinematic dependencies between joints. These techniques use predefined or globally learned joint relationships, which may fail to capture pose-dependent constraints. To address this problem, we propose a two-stage GCN-based framework that learns per-pose relationship constraints. Specifically, the first phase quantizes the 2D/3D space to classify the joints into 2D/3D blocks based on their locality. This spatial dependency information guides this phase to estimate reliable 2D and 3D poses. The second stage further improves the 3D estimation through a GCN-based module that uses an adaptative nearest neighbor algorithm to determine joint relationships. Extensive experiments show that our multi-stage GCN approach yields an efficient model that produces accurate 2D/3D hand poses and outperforms the state-of-the-art on two public datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.