Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Crack Detection Using Convolutional Neural Network (2105.10892v1)

Published 23 May 2021 in eess.IV

Abstract: To improve the efficiency and reduce the labour cost of the renovation process, this study presents a lightweight Convolutional Neural Network (CNN)-based architecture to extract crack-like features, such as cracks and joints. Moreover, Transfer Learning (TF) method was used to save training time while offering comparable prediction results. For three different objectives: 1) Detection of the concrete cracks; 2) Detection of natural stone cracks; 3) Differentiation between joints and cracks in natural stone; We built a natural stone dataset with joints and cracks information as complementary for the concrete benchmark dataset. As the results show, our model is demonstrated as an effective tool for industry use.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.