Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems (2105.10544v2)

Published 21 May 2021 in math.NA and cs.NA

Abstract: For decades, uncertainty quantification techniques based on the spectral approach have been demonstrated to be computationally more efficient than the Monte Carlo method for a wide variety of problems, particularly when the dimensionality of the probability space is relatively low. The time-dependent generalized polynomial chaos (TD-gPC) is one such technique that uses an evolving orthogonal basis to better represent the stochastic part of the solution space in time. In this paper, we present a new numerical method that uses the concept of 'enriched stochastic flow maps' to track the evolution of the stochastic part of the solution space in time. The computational cost of this proposed flow-driven stochastic chaos (FSC) method is an order of magnitude lower than TD-gPC for comparable solution accuracy. This gain in computational cost is realized because, unlike most existing methods, the number of basis vectors required to track the stochastic part of the solution space, and consequently the computational cost associated with the solution of the resulting system of equations, does not depend upon the dimensionality of the probability space. Four representative numerical examples are presented to demonstrate the performance of the FSC method for long-time integration of second-order stochastic dynamical systems in the context of stochastic dynamics of structures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hugo Esquivel (3 papers)
  2. Arun Prakash (5 papers)
  3. Guang Lin (128 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.