Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Spatial resolution of different discretizations over long-time for the Dirac equation with small potentials (2105.10468v1)

Published 21 May 2021 in math.NA and cs.NA

Abstract: We compare the long-time error bounds and spatial resolution of finite difference methods with different spatial discretizations for the Dirac equation with small electromagnetic potentials characterized by $\varepsilon \in (0, 1]$ a dimensionless parameter. We begin with the simple and widely used finite difference time domain (FDTD) methods, and establish rigorous error bounds of them, which are valid up to the time at $O(1/\varepsilon)$. In the error estimates, we pay particular attention to how the errors depend explicitly on the mesh size $h$ and time step $\tau$ as well as the small parameter $\varepsilon$. Based on the results, in order to obtain "correct" numerical solutions up to the time at $O(1/\varepsilon)$, the $\varepsilon$-scalability (or meshing strategy requirement) of the FDTD methods should be taken as $h = O(\varepsilon{1/2})$ and $\tau = O(\varepsilon{1/2})$. To improve the spatial resolution capacity, we apply the Fourier spectral method to discretize the Dirac equation in space. Error bounds of the resulting finite difference Fourier pseudospectral (FDFP) methods show that they exhibit uniform spatial errors in the long-time regime, which are optimal in space as suggested by the Shannon's sampling theorem. Extensive numerical results are reported to confirm the error bounds and demonstrate that they are sharp.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)