Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Low-Memory Implementations of Ridge Solutions for Broad Learning System with Incremental Learning (2105.10424v2)

Published 21 May 2021 in cs.LG

Abstract: The existing low-memory BLS implementation proposed recently avoids the need for storing and inverting large matrices, to achieve efficient usage of memories. However, the existing low-memory BLS implementation sacrifices the testing accuracy as a price for efficient usage of memories, since it can no longer obtain the generalized inverse or ridge solution for the output weights during incremental learning, and it cannot work under the very small ridge parameter that is utilized in the original BLS. Accordingly, it is required to develop the low-memory BLS implementations, which can work under very small ridge parameters and compute the generalized inverse or ridge solution for the output weights in the process of incremental learning. In this paper, firstly we propose the low-memory implementations for the recently proposed recursive and square-root BLS algorithms on added inputs and the recently proposed squareroot BLS algorithm on added nodes, by simply processing a batch of inputs or nodes in each recursion. Since the recursive BLS implementation includes the recursive updates of the inverse matrix that may introduce numerical instabilities after a large number of iterations, and needs the extra computational load to decompose the inverse matrix into the Cholesky factor when cooperating with the proposed low-memory implementation of the square-root BLS algorithm on added nodes, we only improve the low-memory implementations of the square-root BLS algorithms on added inputs and nodes, to propose the full lowmemory implementation of the square-root BLS algorithm. All the proposed low-memory BLS implementations compute the ridge solution for the output weights in the process of incremental learning, and most of them can work under very small ridge parameters.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube