Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining
Abstract: Existing models of multilingual sentence embeddings require large parallel data resources which are not available for low-resource languages. We propose a novel unsupervised method to derive multilingual sentence embeddings relying only on monolingual data. We first produce a synthetic parallel corpus using unsupervised machine translation, and use it to fine-tune a pretrained cross-lingual masked LLM (XLM) to derive the multilingual sentence representations. The quality of the representations is evaluated on two parallel corpus mining tasks with improvements of up to 22 F1 points over vanilla XLM. In addition, we observe that a single synthetic bilingual corpus is able to improve results for other language pairs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.