Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning general and distinctive 3D local deep descriptors for point cloud registration (2105.10382v3)

Published 21 May 2021 in cs.CV and cs.RO

Abstract: An effective 3D descriptor should be invariant to different geometric transformations, such as scale and rotation, robust to occlusions and clutter, and capable of generalising to different application domains. We present a simple yet effective method to learn general and distinctive 3D local descriptors that can be used to register point clouds that are captured in different domains. Point cloud patches are extracted, canonicalised with respect to their local reference frame, and encoded into scale and rotation-invariant compact descriptors by a deep neural network that is invariant to permutations of the input points. This design is what enables our descriptors to generalise across domains. We evaluate and compare our descriptors with alternative handcrafted and deep learning-based descriptors on several indoor and outdoor datasets that are reconstructed by using both RGBD sensors and laser scanners. Our descriptors outperform most recent descriptors by a large margin in terms of generalisation, and also become the state of the art in benchmarks where training and testing are performed in the same domain.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.