Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 44 tok/s
Gemini 2.5 Flash 162 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Definite Non-Ancestral Relations and Structure Learning (2105.10350v1)

Published 20 May 2021 in cs.LG and stat.ME

Abstract: In causal graphical models based on directed acyclic graphs (DAGs), directed paths represent causal pathways between the corresponding variables. The variable at the beginning of such a path is referred to as an ancestor of the variable at the end of the path. Ancestral relations between variables play an important role in causal modeling. In existing literature on structure learning, these relations are usually deduced from learned structures and used for orienting edges or formulating constraints of the space of possible DAGs. However, they are usually not posed as immediate target of inference. In this work we investigate the graphical characterization of ancestral relations via CPDAGs and d-separation relations. We propose a framework that can learn definite non-ancestral relations without first learning the skeleton. This frame-work yields structural information that can be used in both score- and constraint-based algorithms to learn causal DAGs more efficiently.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.