Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Contention-Aware GPU Partitioning and Task-to-Partition Allocation for Real-Time Workloads (2105.10312v1)

Published 21 May 2021 in cs.DC, cs.SY, and eess.SY

Abstract: In order to satisfy timing constraints, modern real-time applications require massively parallel accelerators such as General Purpose Graphic Processing Units (GPGPUs). Generation after generation, the number of computing clusters made available in novel GPU architectures is steadily increasing, hence, investigating suitable scheduling approaches is now mandatory. Such scheduling approaches are related to mapping different and concurrent compute kernels within the GPU computing clusters, hence grouping GPU computing clusters into schedulable partitions. In this paper we propose novel techniques to define GPU partitions; this allows us to define suitable task-to-partition allocation mechanisms in which tasks are GPU compute kernels featuring different timing requirements. Such mechanisms will take into account the interference that GPU kernels experience when running in overlapping time windows. Hence, an effective and simple way to quantify the magnitude of such interference is also presented. We demonstrate the efficiency of the proposed approaches against the classical techniques that considered the GPU as a single, non-partitionable resource.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.