Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Energy Minimized Federated Fog Computing over Passive Optical Networks (2105.10242v1)

Published 21 May 2021 in cs.NI and eess.SP

Abstract: The rapid growth of time-sensitive applications and services has driven enhancements to computing infrastructures. The main challenge that needs addressing for these applications is the optimal placement of the end-users demands to reduce the total power consumption and delay. One of the widely adopted paradigms to address such a challenge is fog computing. Placing fog units close to end-users at the edge of the network can help mitigate some of the latency and energy efficiency issues. Compared to the traditional hyperscale cloud data centres, fog computing units are constrained by computational power, hence, the capacity of fog units plays a critical role in meeting the stringent demands of the end-users due to intensive processing workloads. In this paper, we aim to optimize the placement of virtual machines (VMs) demands originating from end-users in a fog computing setting by formulating a Mixed Integer Linear Programming (MILP) model to minimize the total power consumption through the use of a federated architecture made up of multiple distributed fog cells. The obtained results show an increase in processing capacity in the fog layer and a reduction in the power consumption by up to 26% compared to the Non-Federated fogs network.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.