Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Temporal Piecewise-Linear Numeric Planning with Lazy Consistency Checking (2105.10176v2)

Published 21 May 2021 in cs.AI

Abstract: Temporal planning often involves numeric effects that are directly proportional to their action's duration. These include continuous effects, where a numeric variable is subjected to a rate of change while the action is being executed, and discrete duration-dependent effects, where the variable is updated instantaneously but the magnitude of such change is computed from the action's duration. When these effects are linear, state--of--the--art temporal planners often make use of Linear Programming to ensure that these numeric updates are consistent with the chosen start times and durations of the plan's actions. This is typically done for each evaluated state as part of the search process. This exhaustive approach is not scalable to solve real-world problems that require long plans, because the linear program's size becomes larger and slower to solve. In this work we propose techniques that minimise this overhead by computing these checks more selectively and formulating linear programs that have a smaller footprint. The effectiveness of these techniques is demonstrated on domains that use a mix of discrete and continuous effects, which is typical of real-world planning problems. The resultant planner also outperforms most state-of-the-art temporal-numeric and hybrid planners, in terms of both coverage and scalability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Josef Bajada (6 papers)
  2. Maria Fox (14 papers)
  3. Derek Long (13 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.