Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks (2105.10113v1)

Published 21 May 2021 in cs.LG

Abstract: Deep learning (DL) has achieved unprecedented success in a variety of tasks. However, DL systems are notoriously difficult to test and debug due to the lack of explainability of DL models and the huge test input space to cover. Generally speaking, it is relatively easy to collect a massive amount of test data, but the labeling cost can be quite high. Consequently, it is essential to conduct test selection and label only those selected "high quality" bug-revealing test inputs for test cost reduction. In this paper, we propose a novel test prioritization technique that brings order into the unlabeled test instances according to their bug-revealing capabilities, namely TestRank. Different from existing solutions, TestRank leverages both intrinsic attributes and contextual attributes of test instances when prioritizing them. To be specific, we first build a similarity graph on test instances and training samples, and we conduct graph-based semi-supervised learning to extract contextual features. Then, for a particular test instance, the contextual features extracted from the graph neural network (GNN) and the intrinsic features obtained with the DL model itself are combined to predict its bug-revealing probability. Finally, TestRank prioritizes unlabeled test instances in descending order of the above probability value. We evaluate the performance of TestRank on a variety of image classification datasets. Experimental results show that the debugging efficiency of our method significantly outperforms existing test prioritization techniques.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.