Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Boosting Span-based Joint Entity and Relation Extraction via Squence Tagging Mechanism (2105.10080v2)

Published 21 May 2021 in cs.CL

Abstract: Span-based joint extraction simultaneously conducts named entity recognition (NER) and relation extraction (RE) in text span form. Recent studies have shown that token labels can convey crucial task-specific information and enrich token semantics. However, as far as we know, due to completely abstain from sequence tagging mechanism, all prior span-based work fails to use token label in-formation. To solve this problem, we pro-pose Sequence Tagging enhanced Span-based Network (STSN), a span-based joint extrac-tion network that is enhanced by token BIO label information derived from sequence tag-ging based NER. By stacking multiple atten-tion layers in depth, we design a deep neu-ral architecture to build STSN, and each atten-tion layer consists of three basic attention units. The deep neural architecture first learns seman-tic representations for token labels and span-based joint extraction, and then constructs in-formation interactions between them, which also realizes bidirectional information interac-tions between span-based NER and RE. Fur-thermore, we extend the BIO tagging scheme to make STSN can extract overlapping en-tity. Experiments on three benchmark datasets show that our model consistently outperforms previous optimal models by a large margin, creating new state-of-the-art results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.