Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s Pro
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Boosting Span-based Joint Entity and Relation Extraction via Squence Tagging Mechanism (2105.10080v2)

Published 21 May 2021 in cs.CL

Abstract: Span-based joint extraction simultaneously conducts named entity recognition (NER) and relation extraction (RE) in text span form. Recent studies have shown that token labels can convey crucial task-specific information and enrich token semantics. However, as far as we know, due to completely abstain from sequence tagging mechanism, all prior span-based work fails to use token label in-formation. To solve this problem, we pro-pose Sequence Tagging enhanced Span-based Network (STSN), a span-based joint extrac-tion network that is enhanced by token BIO label information derived from sequence tag-ging based NER. By stacking multiple atten-tion layers in depth, we design a deep neu-ral architecture to build STSN, and each atten-tion layer consists of three basic attention units. The deep neural architecture first learns seman-tic representations for token labels and span-based joint extraction, and then constructs in-formation interactions between them, which also realizes bidirectional information interac-tions between span-based NER and RE. Fur-thermore, we extend the BIO tagging scheme to make STSN can extract overlapping en-tity. Experiments on three benchmark datasets show that our model consistently outperforms previous optimal models by a large margin, creating new state-of-the-art results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.