Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Preventing Machine Learning Poisoning Attacks Using Authentication and Provenance (2105.10051v1)

Published 20 May 2021 in cs.CR

Abstract: Recent research has successfully demonstrated new types of data poisoning attacks. To address this problem, some researchers have proposed both offline and online data poisoning detection defenses which employ machine learning algorithms to identify such attacks. In this work, we take a different approach to preventing data poisoning attacks which relies on cryptographically-based authentication and provenance to ensure the integrity of the data used to train a machine learning model. The same approach is also used to prevent software poisoning and model poisoning attacks. A software poisoning attack maliciously alters one or more software components used to train a model. Once the model has been trained it can also be protected against model poisoning attacks which seek to alter a model's predictions by modifying its underlying parameters or structure. Finally, an evaluation set or test set can also be protected to provide evidence if they have been modified by a second data poisoning attack. To achieve these goals, we propose VAMP which extends the previously proposed AMP system, that was designed to protect media objects such as images, video files or audio clips, to the machine learning setting. We first provide requirements for authentication and provenance for a secure machine learning system. Next, we demonstrate how VAMP's manifest meets these requirements to protect a machine learning system's datasets, software components, and models.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.