Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-group Agnostic PAC Learnability (2105.09989v1)

Published 20 May 2021 in cs.LG

Abstract: An agnostic PAC learning algorithm finds a predictor that is competitive with the best predictor in a benchmark hypothesis class, where competitiveness is measured with respect to a given loss function. However, its predictions might be quite sub-optimal for structured subgroups of individuals, such as protected demographic groups. Motivated by such fairness concerns, we study "multi-group agnostic PAC learnability": fixing a measure of loss, a benchmark class $\H$ and a (potentially) rich collection of subgroups $\G$, the objective is to learn a single predictor such that the loss experienced by every group $g \in \G$ is not much larger than the best possible loss for this group within $\H$. Under natural conditions, we provide a characterization of the loss functions for which such a predictor is guaranteed to exist. For any such loss function we construct a learning algorithm whose sample complexity is logarithmic in the size of the collection $\G$. Our results unify and extend previous positive and negative results from the multi-group fairness literature, which applied for specific loss functions.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.