Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-group Agnostic PAC Learnability (2105.09989v1)

Published 20 May 2021 in cs.LG

Abstract: An agnostic PAC learning algorithm finds a predictor that is competitive with the best predictor in a benchmark hypothesis class, where competitiveness is measured with respect to a given loss function. However, its predictions might be quite sub-optimal for structured subgroups of individuals, such as protected demographic groups. Motivated by such fairness concerns, we study "multi-group agnostic PAC learnability": fixing a measure of loss, a benchmark class $\H$ and a (potentially) rich collection of subgroups $\G$, the objective is to learn a single predictor such that the loss experienced by every group $g \in \G$ is not much larger than the best possible loss for this group within $\H$. Under natural conditions, we provide a characterization of the loss functions for which such a predictor is guaranteed to exist. For any such loss function we construct a learning algorithm whose sample complexity is logarithmic in the size of the collection $\G$. Our results unify and extend previous positive and negative results from the multi-group fairness literature, which applied for specific loss functions.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)