Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Dual-side Sparse Tensor Core (2105.09564v1)

Published 20 May 2021 in cs.AR and cs.LG

Abstract: Leveraging sparsity in deep neural network (DNN) models is promising for accelerating model inference. Yet existing GPUs can only leverage the sparsity from weights but not activations, which are dynamic, unpredictable, and hence challenging to exploit. In this work, we propose a novel architecture to efficiently harness the dual-side sparsity (i.e., weight and activation sparsity). We take a systematic approach to understand the (dis)advantages of previous sparsity-related architectures and propose a novel, unexplored paradigm that combines outer-product computation primitive and bitmap-based encoding format. We demonstrate the feasibility of our design with minimal changes to the existing production-scale inner-product-based Tensor Core. We propose a set of novel ISA extensions and co-design the matrix-matrix multiplication and convolution algorithms, which are the two dominant computation patterns in today's DNN models, to exploit our new dual-side sparse Tensor Core. Our evaluation shows that our design can fully unleash the dual-side DNN sparsity and improve the performance by up to one order of magnitude with \hl{small} hardware overhead.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.