Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mobile Reconfigurable Intelligent Surfaces for NOMA Networks: Federated Learning Approaches (2105.09462v1)

Published 20 Mar 2021 in cs.NI, cs.SY, and eess.SY

Abstract: A novel framework of reconfigurable intelligent surfaces (RISs)-enhanced indoor wireless networks is proposed, where an RIS mounted on the robot is invoked to enable mobility of the RIS and enhance the service quality for mobile users. Meanwhile, non-orthogonal multiple access (NOMA) techniques are adopted to further increase the spectrum efficiency since RISs are capable to provide NOMA with artificial controlled channel conditions, which can be seen as a beneficial operation condition to obtain NOMA gains. To optimize the sum rate of all users, a deep deterministic policy gradient (DDPG) algorithm is invoked to optimize the deployment and phase shifts of the mobile RIS as well as the power allocation policy. In order to improve the efficiency and effectiveness of agent training for the DDPG agents, a federated learning (FL) concept is adopted to enable multiple agents to simultaneously explore similar environments and exchange experiences. We also proved that with the same random exploring policy, the FL armed deep reinforcement learning (DRL) agents can theoretically obtain a reward gain compare to the independent agents. Our simulation results indicate that the mobile RIS scheme can significantly outperform the fixed RIS paradigm, which provides about three times data rate gain compare to the fixed RIS paradigm. Moreover, the NOMA scheme is capable to achieve a gain of 42% in contrast with the OMA scheme in terms of sum rate. Finally, the multi-cell simulation proved that the FL enhanced DDPG algorithm has a superior convergence rate and optimization performance than the independent training framework.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.