Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Revisiting Data Compression in Column-Stores (2105.09058v1)

Published 19 May 2021 in cs.DB, cs.DC, and cs.PF

Abstract: Data compression is widely used in contemporary column-oriented DBMSes to lower space usage and to speed up query processing. Pioneering systems have introduced compression to tackle the disk bandwidth bottleneck by trading CPU processing power for it. The main issue of this is a trade-off between the compression ratio and the decompression CPU cost. Existing results state that light-weight compression with small decompression costs outperforms heavy-weight compression schemes in column-stores. However, since the time these results were obtained, CPU, RAM, and disk performance have advanced considerably. Moreover, novel compression algorithms have emerged. In this paper, we revisit the problem of compression in disk-based column-stores. More precisely, we study the I/O-RAM compression scheme which implies that there are two types of pages of different size: disk pages (compressed) and in-memory pages (uncompressed). In this scheme, the buffer manager is responsible for decompressing pages as soon as they arrive from disk. This scheme is rather popular as it is easy to implement: several modern column and row-stores use it. We pose and address the following research questions: 1) Are heavy-weight compression schemes still inappropriate for disk-based column-stores?, 2) Are new light-weight compression algorithms better than the old ones?, 3) Is there a need for SIMD-employing decompression algorithms in case of a disk-based system? We study these questions experimentally using a columnar query engine and Star Schema Benchmark.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.