Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prototype Guided Federated Learning of Visual Feature Representations (2105.08982v1)

Published 19 May 2021 in cs.LG and cs.CV

Abstract: Federated Learning (FL) is a framework which enables distributed model training using a large corpus of decentralized training data. Existing methods aggregate models disregarding their internal representations, which are crucial for training models in vision tasks. System and statistical heterogeneity (e.g., highly imbalanced and non-i.i.d. data) further harm model training. To this end, we introduce a method, called FedProto, which computes client deviations using margins of prototypical representations learned on distributed data, and applies them to drive federated optimization via an attention mechanism. In addition, we propose three methods to analyse statistical properties of feature representations learned in FL, in order to elucidate the relationship between accuracy, margins and feature discrepancy of FL models. In experimental analyses, FedProto demonstrates state-of-the-art accuracy and convergence rate across image classification and semantic segmentation benchmarks by enabling maximum margin training of FL models. Moreover, FedProto reduces uncertainty of predictions of FL models compared to the baseline. To our knowledge, this is the first work evaluating FL models in dense prediction tasks, such as semantic segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Umberto Michieli (40 papers)
  2. Mete Ozay (65 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.