Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Neural Network Accelerated Implicit Filtering (2105.08883v1)

Published 19 May 2021 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we illustrate a novel method for solving optimization problems when derivatives are not explicitly available. We show that combining implicit filtering (IF), an existing derivative free optimization (DFO) method, with a deep neural network global approximator leads to an accelerated DFO method. Derivative free optimization problems occur in a wide variety of applications, including simulation based optimization and the optimization of stochastic processes, and naturally arise when the objective function can be viewed as a black box, such as a computer simulation. We highlight the practical value of our method, which we call deep neural network accelerated implicit filtering (DNNAIF), by demonstrating its ability to help solve the coverage directed generation (CDG) problem. Solving the CDG problem is a key part of the design and verification process for new electronic circuits, including the chips that power modern servers and smartphones.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.