Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Localization, Convexity, and Star Aggregation (2105.08866v3)

Published 19 May 2021 in stat.ML and cs.LG

Abstract: Offset Rademacher complexities have been shown to provide tight upper bounds for the square loss in a broad class of problems including improper statistical learning and online learning. We show that the offset complexity can be generalized to any loss that satisfies a certain general convexity condition. Further, we show that this condition is closely related to both exponential concavity and self-concordance, unifying apparently disparate results. By a novel geometric argument, many of our bounds translate to improper learning in a non-convex class with Audibert's star algorithm. Thus, the offset complexity provides a versatile analytic tool that covers both convex empirical risk minimization and improper learning under entropy conditions. Applying the method, we recover the optimal rates for proper and improper learning with the $p$-loss for $1 < p < \infty$, and show that improper variants of empirical risk minimization can attain fast rates for logistic regression and other generalized linear models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube