Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reinforcement Learning With Sparse-Executing Actions via Sparsity Regularization (2105.08666v4)

Published 18 May 2021 in cs.LG and cs.AI

Abstract: Reinforcement learning (RL) has demonstrated impressive performance in decision-making tasks like embodied control, autonomous driving and financial trading. In many decision-making tasks, the agents often encounter the problem of executing actions under limited budgets. However, classic RL methods typically overlook the challenges posed by such sparse-executing actions. They operate under the assumption that all actions can be taken for a unlimited number of times, both in the formulation of the problem and in the development of effective algorithms. To tackle the issue of limited action execution in RL, this paper first formalizes the problem as a Sparse Action Markov Decision Process (SA-MDP), in which specific actions in the action space can only be executed for a limited time. Then, we propose a policy optimization algorithm, Action Sparsity REgularization (ASRE), which adaptively handles each action with a distinct preference. ASRE operates through two steps: First, ASRE evaluates action sparsity by constrained action sampling. Following this, ASRE incorporates the sparsity evaluation into policy learning by way of an action distribution regularization. We provide theoretical identification that validates the convergence of ASRE to a regularized optimal value function. Experiments on tasks with known sparse-executing actions, where classical RL algorithms struggle to train policy efficiently, ASRE effectively constrains the action sampling and outperforms baselines. Moreover, we present that ASRE can generally improve the performance in Atari games, demonstrating its broad applicability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.