Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Correlation Analysis for Audio-EEG Decoding (2105.08492v2)

Published 18 May 2021 in eess.AS, cs.SD, eess.SP, and q-bio.QM

Abstract: The electroencephalography (EEG), which is one of the easiest modes of recording brain activations in a non-invasive manner, is often distorted due to recording artifacts which adversely impacts the stimulus-response analysis. The most prominent techniques thus far attempt to improve the stimulus-response correlations using linear methods. In this paper, we propose a neural network based correlation analysis framework that significantly improves over the linear methods for auditory stimuli. A deep model is proposed for intra-subject audio-EEG analysis based on directly optimizing the correlation loss. Further, a neural network model with a shared encoder architecture is proposed for improving the inter-subject stimulus response correlations. These models attempt to suppress the EEG artifacts while preserving the components related to the stimulus. Several experiments are performed using EEG recordings from subjects listening to speech and music stimuli. In these experiments, we show that the deep models improve the Pearson correlation significantly over the linear methods (average absolute improvements of 7.4% in speech tasks and 29.3% in music tasks). We also analyze the impact of several model parameters on the stimulus-response correlation.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube