Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Correlation Analysis for Audio-EEG Decoding (2105.08492v2)

Published 18 May 2021 in eess.AS, cs.SD, eess.SP, and q-bio.QM

Abstract: The electroencephalography (EEG), which is one of the easiest modes of recording brain activations in a non-invasive manner, is often distorted due to recording artifacts which adversely impacts the stimulus-response analysis. The most prominent techniques thus far attempt to improve the stimulus-response correlations using linear methods. In this paper, we propose a neural network based correlation analysis framework that significantly improves over the linear methods for auditory stimuli. A deep model is proposed for intra-subject audio-EEG analysis based on directly optimizing the correlation loss. Further, a neural network model with a shared encoder architecture is proposed for improving the inter-subject stimulus response correlations. These models attempt to suppress the EEG artifacts while preserving the components related to the stimulus. Several experiments are performed using EEG recordings from subjects listening to speech and music stimuli. In these experiments, we show that the deep models improve the Pearson correlation significantly over the linear methods (average absolute improvements of 7.4% in speech tasks and 29.3% in music tasks). We also analyze the impact of several model parameters on the stimulus-response correlation.

Citations (20)

Summary

We haven't generated a summary for this paper yet.