Papers
Topics
Authors
Recent
2000 character limit reached

An Internal Language for Categories Enriched over Generalised Metric Spaces (2105.08473v2)

Published 18 May 2021 in cs.LO

Abstract: Programs with a continuous state space or that interact with physical processes often require notions of equivalence going beyond the standard binary setting in which equivalence either holds or does not hold. In this paper we explore the idea of equivalence taking values in a quantale V, which covers the cases of (in)equations and (ultra)metric equations among others. Our main result is the introduction of a V-equational deductive system for linear {\lambda}-calculus together with a proof that it is sound and complete (in fact, an internal language) for a class of enriched autonomous categories. In the case of inequations, we get an internal language for autonomous categories enriched over partial orders. In the case of (ultra)metric equations, we get an internal language for autonomous categories enriched over (ultra)metric spaces. We use our results to obtain examples of inequational and metric equational systems for higher-order programs that contain real-time and probabilistic behaviour

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.