Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time and Query Optimal Quantum Algorithms Based on Decision Trees (2105.08309v2)

Published 18 May 2021 in quant-ph, cs.CC, and cs.DS

Abstract: It has recently been shown that starting with a classical query algorithm (decision tree) and a guessing algorithm that tries to predict the query answers, we can design a quantum algorithm with query complexity $O(\sqrt{GT})$ where $T$ is the query complexity of the classical algorithm (depth of the decision tree) and $G$ is the maximum number of wrong answers by the guessing algorithm [arXiv:1410.0932, arXiv:1905.13095]. In this paper we show that, given some constraints on the classical algorithms, this quantum algorithm can be implemented in time $\tilde O(\sqrt{GT})$. Our algorithm is based on non-binary span programs and their efficient implementation. We conclude that various graph theoretic problems including bipartiteness, cycle detection and topological sort can be solved in time $O(n{3/2}\log n)$ and with $O(n{3/2})$ quantum queries. Moreover, finding a maximal matching can be solved with $O(n{3/2})$ quantum queries in time $O(n{3/2}\log n)$, and maximum bipartite matching can be solved in time $O(n2\log n)$.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.