Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CNN-based Approaches For Cross-Subject Classification in Motor Imagery: From The State-of-The-Art to DynamicNet (2105.07917v1)

Published 17 May 2021 in cs.LG, cs.CV, cs.HC, cs.NE, and eess.SP

Abstract: Motor imagery (MI)-based brain-computer interface (BCI) systems are being increasingly employed to provide alternative means of communication and control for people suffering from neuro-motor impairments, with a special effort to bring these systems out of the controlled lab environments. Hence, accurately classifying MI from brain signals, e.g., from electroencephalography (EEG), is essential to obtain reliable BCI systems. However, MI classification is still a challenging task, because the signals are characterized by poor SNR, high intra-subject and cross-subject variability. Deep learning approaches have started to emerge as valid alternatives to standard machine learning techniques, e.g., filter bank common spatial pattern (FBCSP), to extract subject-independent features and to increase the cross-subject classification performance of MI BCI systems. In this paper, we first present a review of the most recent studies using deep learning for MI classification, with particular attention to their cross-subject performance. Second, we propose DynamicNet, a Python-based tool for quick and flexible implementations of deep learning models based on convolutional neural networks. We show-case the potentiality of DynamicNet by implementing EEGNet, a well-established architecture for effective EEG classification. Finally, we compare its performance with FBCSP in a 4-class MI classification over public datasets. To explore its cross-subject classification ability, we applied three different cross-validation schemes. From our results, we demonstrate that DynamicNet-implemented EEGNet outperforms FBCSP by about 25%, with a statistically significant difference when cross-subject validation schemes are applied.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.