Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A hierarchical preconditioner for wave problems in quasilinear complexity (2105.07791v1)

Published 17 May 2021 in math.NA, cs.DS, and cs.NA

Abstract: The paper introduces a novel, hierarchical preconditioner based on nested dissection and hierarchical matrix compression. The preconditioner is intended for continuous and discontinuous Galerkin formulations of elliptic problems. We exploit the property that Schur complements arising in such problems can be well approximated by hierarchical matrices. An approximate factorization can be computed matrix-free and in a (quasi-)linear number of operations. The nested dissection is specifically designed to aid the factorization process using hierarchical matrices. We demonstrate the viability of the preconditioner on a range of 2D problems, including the Helmholtz equation and the elastic wave equation. Throughout all tests, including wave phenomena with high wavenumbers, the generalized minimal residual method (GMRES) with the proposed preconditioner converges in a very low number of iterations. We demonstrate that this is due to the hierarchical nature of our approach which makes the high wavenumber limit manageable.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.