Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

$p$-robust equilibrated flux reconstruction in ${\boldsymbol H}(\mathrm{curl})$ based on local minimizations. Application to a posteriori analysis of the curl-curl problem (2105.07770v2)

Published 17 May 2021 in math.NA and cs.NA

Abstract: We present a local construction of H(curl)-conforming piecewise polynomials satisfying a prescribed curl constraint. We start from a piecewise polynomial not contained in the H(curl) space but satisfying a suitable orthogonality property. The procedure employs minimizations in vertex patches and the outcome is, up to a generic constant independent of the underlying polynomial degree, as accurate as the best-approximations over the entire local versions of H(curl). This allows to design guaranteed, fully computable, constant-free, and polynomial-degree-robust a posteriori error estimates of Prager-Synge type for N\'ed\'elec finite element approximations of the curl-curl problem. A divergence-free decomposition of a divergence-free H(div)-conforming piecewise polynomial, relying on over-constrained minimizations in Raviart-Thomas spaces, is the key ingredient. Numerical results illustrate the theoretical developments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.