Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fusion-Denoising Attack on InstaHide with Data Augmentation (2105.07754v2)

Published 17 May 2021 in cs.CR and cs.LG

Abstract: InstaHide is a state-of-the-art mechanism for protecting private training images, by mixing multiple private images and modifying them such that their visual features are indistinguishable to the naked eye. In recent work, however, Carlini et al. show that it is possible to reconstruct private images from the encrypted dataset generated by InstaHide. Nevertheless, we demonstrate that Carlini et al.'s attack can be easily defeated by incorporating data augmentation into InstaHide. This leads to a natural question: is InstaHide with data augmentation secure? In this paper, we provide a negative answer to this question, by devising an attack for recovering private images from the outputs of InstaHide even when data augmentation is present. The basic idea is to use a comparative network to identify encrypted images that are likely to correspond to the same private image, and then employ a fusion-denoising network for restoring the private image from the encrypted ones, taking into account the effects of data augmentation. Extensive experiments demonstrate the effectiveness of the proposed attack in comparison to Carlini et al.'s attack.

Citations (7)

Summary

We haven't generated a summary for this paper yet.