Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The effect of algorithmic bias and network structure on coexistence, consensus, and polarization of opinions (2105.07703v4)

Published 17 May 2021 in physics.soc-ph and cs.SI

Abstract: Individuals of modern societies share ideas and participate in collective processes within a pervasive, variable, and mostly hidden ecosystem of content filtering technologies that determine what information we see online. Despite the impact of these algorithms on daily life and society, little is known about their effect on information transfer and opinion formation. It is thus unclear to what extent algorithmic bias has a harmful influence on collective decision-making, such as a tendency to polarize debate. Here we introduce a general theoretical framework to systematically link models of opinion dynamics, social network structure, and content filtering. We showcase the flexibility of our framework by exploring a family of binary-state opinion dynamics models where information exchange lies in a spectrum from pairwise to group interactions. All models show an opinion polarization regime driven by algorithmic bias and modular network structure. The role of content filtering is, however, surprisingly nuanced; for pairwise interactions it leads to polarization, while for group interactions it promotes coexistence of opinions. This allows us to pinpoint which social interactions are robust against algorithmic bias, and which ones are susceptible to bias-enhanced opinion polarization. Our framework gives theoretical ground for the development of heuristics to tackle harmful effects of online bias, such as information bottlenecks, echo chambers, and opinion radicalization.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube