Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Stochastic Optimal Control through Approximate Bayesian Input Inference (2105.07693v2)

Published 17 May 2021 in cs.LG, cs.RO, cs.SY, and eess.SY

Abstract: Optimal control under uncertainty is a prevailing challenge for many reasons. One of the critical difficulties lies in producing tractable solutions for the underlying stochastic optimization problem. We show how advanced approximate inference techniques can be used to handle the statistical approximations principled and practically by framing the control problem as a problem of input estimation. Analyzing the Gaussian setting, we present an inference-based solver that is effective in stochastic and deterministic settings and was found to be superior to popular baselines on nonlinear simulated tasks. We draw connections that relate this inference formulation to previous approaches for stochastic optimal control and outline several advantages that this inference view brings due to its statistical nature.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.