Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Convex optimization for actionable \& plausible counterfactual explanations (2105.07630v1)

Published 17 May 2021 in cs.LG and cs.AI

Abstract: Transparency is an essential requirement of machine learning based decision making systems that are deployed in real world. Often, transparency of a given system is achieved by providing explanations of the behavior and predictions of the given system. Counterfactual explanations are a prominent instance of particular intuitive explanations of decision making systems. While a lot of different methods for computing counterfactual explanations exist, only very few work (apart from work from the causality domain) considers feature dependencies as well as plausibility which might limit the set of possible counterfactual explanations. In this work we enhance our previous work on convex modeling for computing counterfactual explanations by a mechanism for ensuring actionability and plausibility of the resulting counterfactual explanations.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.