Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Shared and Private VAEs with Generative Replay for Continual Learning (2105.07627v1)

Published 17 May 2021 in cs.CV and cs.LG

Abstract: Continual learning tries to learn new tasks without forgetting previously learned ones. In reality, most of the existing artificial neural network(ANN) models fail, while humans do the same by remembering previous works throughout their life. Although simply storing all past data can alleviate the problem, it needs large memory and often infeasible in real-world applications where last data access is limited. We hypothesize that the model that learns to solve each task continually has some task-specific properties and some task-invariant characteristics. We propose a hybrid continual learning model that is more suitable in real case scenarios to address the issues that has a task-invariant shared variational autoencoder and T task-specific variational autoencoders. Our model combines generative replay and architectural growth to prevent catastrophic forgetting. We show our hybrid model effectively avoids forgetting and achieves state-of-the-art results on visual continual learning benchmarks such as MNIST, Permuted MNIST(QMNIST), CIFAR100, and miniImageNet datasets. We discuss results on a few more datasets, such as SVHN, Fashion-MNIST, EMNIST, and CIFAR10.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)