Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: from convolutional neural networks to visual transformers (2105.07402v4)

Published 16 May 2021 in cs.CV

Abstract: Cervical cancer is a very common and fatal type of cancer in women. Cytopathology images are often used to screen for this cancer. Given that there is a possibility that many errors can occur during manual screening, a computer-aided diagnosis system based on deep learning has been developed. Deep learning methods require a fixed dimension of input images, but the dimensions of clinical medical images are inconsistent. The aspect ratios of the images suffer while resizing them directly. Clinically, the aspect ratios of cells inside cytopathological images provide important information for doctors to diagnose cancer. Therefore, it is difficult to resize directly. However, many existing studies have resized the images directly and have obtained highly robust classification results. To determine a reasonable interpretation, we have conducted a series of comparative experiments. First, the raw data of the SIPaKMeD dataset are pre-processed to obtain standard and scaled datasets. Then, the datasets are resized to 224 x 224 pixels. Finally, 22 deep learning models are used to classify the standard and scaled datasets. The results of the study indicate that deep learning models are robust to changes in the aspect ratio of cells in cervical cytopathological images. This conclusion is also validated via the Herlev dataset.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.