Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

X-Vectors with Multi-Scale Aggregation for Speaker Diarization (2105.07367v1)

Published 16 May 2021 in eess.AS and cs.SD

Abstract: Speaker diarization is the process of labeling different speakers in a speech signal. Deep speaker embeddings are generally extracted from short speech segments and clustered to determine the segments belong to same speaker identity. The x-vector, which embeds segment-level speaker characteristics by statistically pooling frame-level representations, is one of the most widely used deep speaker embeddings in speaker diarization. Multi-scale aggregation, which employs multi-scale representations from different layers, has recently successfully been used in short duration speaker verification. In this paper, we investigate a multi-scale aggregation approach in an x-vector embedding framework for speaker diarization by exploiting multiple statistics pooling layers from different frame-level layers. Thus, it is expected that x-vectors with multi-scale aggregation have the potential to capture meaningful speaker characteristics from short segments, effectively taking advantage of different information at multiple layers. Experimental evaluation on the CALLHOME dataset showed that our approach provides substantial improvement over the baseline x-vectors.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.