Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

1D CNN Architectures for Music Genre Classification (2105.07302v1)

Published 15 May 2021 in cs.SD and eess.AS

Abstract: This paper proposes a 1D residual convolutional neural network (CNN) architecture for music genre classification and compares it with other recent 1D CNN architectures. The 1D CNNs learn a representation and a discriminant directly from the raw audio signal. Several convolutional layers capture the time-frequency characteristics of the audio signal and learn various filters relevant to the music genre recognition task. The proposed approach splits the audio signal into overlapped segments using a sliding window to comply with the fixed-length input constraint of the 1D CNNs. As a result, music genre classification can be carried out on a single audio segment or on the aggregation of the predictions on several audio segments, which improves the final accuracy. The performance of the proposed 1D residual CNN is assessed on a public dataset of 1,000 audio clips. The experimental results have shown that it achieves 80.93% of mean accuracy in classifying music genres and outperforms other 1D CNN architectures.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.