Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Brain Inspired Face Recognition: A Computational Framework (2105.07237v4)

Published 15 May 2021 in cs.CV

Abstract: This paper presents a new proposal of an efficient computational model of face recognition which uses cues from the distributed face recognition mechanism of the brain, and by gathering engineering equivalent of these cues from existing literature. Three distinct and widely used features: Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Principal components (PCs) extracted from target images are used in a manner which is simple, and yet effective. The HOG and LBP features further undergo principal component analysis for dimensionality reduction. Our model uses multi-layer perceptrons (MLP) to classify these three features and fuse them at the decision level using sum rule. A computational theory is first developed by using concepts from the information processing mechanism of the brain. Extensive experiments are carried out using ten publicly available datasets to validate our proposed model's performance in recognizing faces with extreme variation of illumination, pose angle, expression, and background. Results obtained are extremely promising when compared with other face recognition algorithms including CNN and deep learning-based methods. This highlights that simple computational processes, if clubbed properly, can produce competing performance with best algorithms.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.