Papers
Topics
Authors
Recent
2000 character limit reached

Analysis of Structured Deep Kernel Networks (2105.07228v2)

Published 15 May 2021 in cs.LG

Abstract: In this paper, we leverage a recent deep kernel representer theorem to connect kernel based learning and (deep) neural networks in order to understand their interplay. In particular, we show that the use of special types of kernels yields models reminiscent of neural networks that are founded in the same theoretical framework of classical kernel methods, while benefiting from the computational advantages of deep neural networks. Especially the introduced Structured Deep Kernel Networks (SDKNs) can be viewed as neural networks (NNs) with optimizable activation functions obeying a representer theorem. This link allows us to analyze also NNs within the framework of kernel networks. We prove analytic properties of the SDKNs which show their universal approximation properties in three different asymptotic regimes of unbounded number of centers, width and depth. Especially in the case of unbounded depth, more accurate constructions can be achieved using fewer layers compared to corresponding constructions for ReLU neural networks. This is made possible by leveraging properties of kernel approximation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.