Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Communication Complexity of Private Simultaneous Quantum Messages Protocols (2105.07120v1)

Published 15 May 2021 in quant-ph, cs.CC, and cs.CR

Abstract: The private simultaneous messages model is a non-interactive version of the multiparty secure computation, which has been intensively studied to examine the communication cost of the secure computation. We consider its quantum counterpart, the private simultaneous quantum messages (PSQM) model, and examine the advantages of quantum communication and prior entanglement of this model. In the PSQM model, $k$ parties $P_1,\ldots,P_k$ initially share a common random string (or entangled states in a stronger setting), and they have private classical inputs $x_1,\ldots, x_k$. Every $P_i$ generates a quantum message from the private input $x_i$ and the shared random string (entangled states), and then sends it to the referee $R$. Receiving the messages, $R$ computes $F(x_1,\ldots,x_k)$. Then, $R$ learns nothing except for $F(x_1,\ldots,x_k)$ as the privacy condition. We obtain the following results for this PSQM model. (1) We demonstrate that the privacy condition inevitably increases the communication cost in the two-party PSQM model as well as in the classical case presented by Applebaum, Holenstein, Mishra, and Shayevitz. In particular, we prove a lower bound $(3-o(1))n$ of the communication complexity in PSQM protocols with a shared random string for random Boolean functions of $2n$-bit input, which is larger than the trivial upper bound $2n$ of the communication complexity without the privacy condition. (2) We demonstrate a factor two gap between the communication complexity of PSQM protocols with shared entangled states and with shared random strings by designing a multiparty PSQM protocol with shared entangled states for a total function that extends the two-party equality function. (3) We demonstrate an exponential gap between the communication complexity of PSQM protocols with shared entangled states and with shared random strings for a two-party partial function.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.