Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Greedy Algorithm is \emph{not} Optimal for On-Line Edge Coloring (2105.06944v1)

Published 14 May 2021 in cs.DS

Abstract: Nearly three decades ago, Bar-Noy, Motwani and Naor showed that no online edge-coloring algorithm can edge color a graph optimally. Indeed, their work, titled "the greedy algorithm is optimal for on-line edge coloring", shows that the competitive ratio of $2$ of the na\"ive greedy algorithm is best possible online. However, their lower bound required bounded-degree graphs, of maximum degree $\Delta = O(\log n)$, which prompted them to conjecture that better bounds are possible for higher-degree graphs. While progress has been made towards resolving this conjecture for restricted inputs and arrivals or for random arrival orders, an answer for fully general \emph{adversarial} arrivals remained elusive. We resolve this thirty-year-old conjecture in the affirmative, presenting a $(1.9+o(1))$-competitive online edge coloring algorithm for general graphs of degree $\Delta = \omega(\log n)$ under vertex arrivals. At the core of our results, and of possible independent interest, is a new online algorithm which rounds a fractional bipartite matching $x$ online under vertex arrivals, guaranteeing that each edge $e$ is matched with probability $(1/2+c)\cdot x_e$, for a constant $c>0.027$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)