Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Greedy Algorithm is \emph{not} Optimal for On-Line Edge Coloring (2105.06944v1)

Published 14 May 2021 in cs.DS

Abstract: Nearly three decades ago, Bar-Noy, Motwani and Naor showed that no online edge-coloring algorithm can edge color a graph optimally. Indeed, their work, titled "the greedy algorithm is optimal for on-line edge coloring", shows that the competitive ratio of $2$ of the na\"ive greedy algorithm is best possible online. However, their lower bound required bounded-degree graphs, of maximum degree $\Delta = O(\log n)$, which prompted them to conjecture that better bounds are possible for higher-degree graphs. While progress has been made towards resolving this conjecture for restricted inputs and arrivals or for random arrival orders, an answer for fully general \emph{adversarial} arrivals remained elusive. We resolve this thirty-year-old conjecture in the affirmative, presenting a $(1.9+o(1))$-competitive online edge coloring algorithm for general graphs of degree $\Delta = \omega(\log n)$ under vertex arrivals. At the core of our results, and of possible independent interest, is a new online algorithm which rounds a fractional bipartite matching $x$ online under vertex arrivals, guaranteeing that each edge $e$ is matched with probability $(1/2+c)\cdot x_e$, for a constant $c>0.027$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.