Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CN-LBP: Complex Networks-based Local Binary Patterns for Texture Classification (2105.06652v3)

Published 14 May 2021 in eess.IV

Abstract: To overcome the limitations of original local binary patterns (LBP), this article proposes a new texture descriptor aided by complex networks (CN) and LBP, named CN-LBP. Specifically, we first abstract a texture image (TI) as directed graphs over different bands with the help of pixel distance, intensity, and gradient (magnitude and angle). Second, several CN-based feature measurements (including clustering coefficient, in-degree centrality, out-degree centrality, and eigenvector centrality) are selected to further decipher the texture features, which generates four feature images that can retain the image information as much as possible. Third, given the original TIs, gradient images (GI), and generated feature images, we can obtain the discriminative representation of texture images based on uniform LBP (ULBP). Finally, the feature vector is obtained by jointly calculating and concatenating the spatial histograms. In contrast to original LBP, the proposed texture descriptor contains more detailed image information, and shows resistance to imaging and noise. Experiment results on four datasets demonstrate that the proposed texture descriptor can significantly improve the classification accuracies compared with the state-of-the-art LBP-based variants and deep learning-based methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Zhengrui Huang (5 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.