Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Vision-Guided Active Tactile Perception for Crack Detection and Reconstruction (2105.06325v1)

Published 13 May 2021 in cs.RO and cs.CV

Abstract: Crack detection is of great significance for monitoring the integrity and well-being of the infrastructure such as bridges and underground pipelines, which are harsh environments for people to access. In recent years, computer vision techniques have been applied in detecting cracks in concrete structures. However, they suffer from variances in light conditions and shadows, lacking robustness and resulting in many false positives. To address the uncertainty in vision, human inspectors actively touch the surface of the structures, guided by vision, which has not been explored in autonomous crack detection. In this paper, we propose a novel approach to detect and reconstruct cracks in concrete structures using vision-guided active tactile perception. Given an RGB-D image of a structure, the rough profile of the crack in the structure surface will first be segmented with a fine-tuned Deep Convolutional Neural Networks, and a set of contact points are generated to guide the collection of tactile images by a camera-based optical tactile sensor. When contacts are made, a pixel-wise mask of the crack can be obtained from the tactile images and therefore the profile of the crack can be refined by aligning the RGB-D image and the tactile images. Extensive experiment results have shown that the proposed method improves the effectiveness and robustness of crack detection and reconstruction significantly, compared to crack detection with vision only, and has the potential to enable robots to help humans with the inspection and repair of the concrete infrastructure.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.