Retrieval-Free Knowledge-Grounded Dialogue Response Generation with Adapters (2105.06232v5)
Abstract: To diversify and enrich generated dialogue responses, knowledge-grounded dialogue has been investigated in recent years. The existing methods tackle the knowledge grounding challenge by retrieving the relevant sentences over a large corpus and augmenting the dialogues with explicit extra information. Despite their success, however, the existing works have drawbacks in inference efficiency. This paper proposes KnowExpert, a framework to bypass the explicit retrieval process and inject knowledge into the pre-trained LLMs with lightweight adapters and adapt to the knowledge-grounded dialogue task. To the best of our knowledge, this is the first attempt to tackle this challenge without retrieval in this task under an open-domain chit-chat scenario. The experimental results show that Knowexpert performs comparably with some retrieval-based baselines while being time-efficient in inference, demonstrating the effectiveness of our proposed method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.