Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning symbol relation tree for online mathematical expression recognition (2105.06084v1)

Published 13 May 2021 in cs.CV and cs.LG

Abstract: This paper proposes a method for recognizing online handwritten mathematical expressions (OnHME) by building a symbol relation tree (SRT) directly from a sequence of strokes. A bidirectional recurrent neural network learns from multiple derived paths of SRT to predict both symbols and spatial relations between symbols using global context. The recognition system has two parts: a temporal classifier and a tree connector. The temporal classifier produces an SRT by recognizing an OnHME pattern. The tree connector splits the SRT into several sub-SRTs. The final SRT is formed by looking up the best combination among those sub-SRTs. Besides, we adopt a tree sorting method to deal with various stroke orders. Recognition experiments indicate that the proposed OnHME recognition system is competitive to other methods. The recognition system achieves 44.12% and 41.76% expression recognition rates on the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2014 and 2016 testing sets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.