Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Model Pruning Based on Quantified Similarity of Feature Maps (2105.06052v2)

Published 13 May 2021 in cs.CV and cs.LG

Abstract: Convolutional Neural Networks (CNNs) has been applied in numerous Internet of Things (IoT) devices for multifarious downstream tasks. However, with the increasing amount of data on edge devices, CNNs can hardly complete some tasks in time with limited computing and storage resources. Recently, filter pruning has been regarded as an effective technique to compress and accelerate CNNs, but existing methods rarely prune CNNs from the perspective of compressing high-dimensional tensors. In this paper, we propose a novel theory to find redundant information in three-dimensional tensors, namely Quantified Similarity between Feature Maps (QSFM), and utilize this theory to guide the filter pruning procedure. We perform QSFM on datasets (CIFAR-10, CIFAR-100 and ILSVRC-12) and edge devices, demonstrate that the proposed method can find the redundant information in the neural networks effectively with comparable compression and tolerable drop of accuracy. Without any fine-tuning operation, QSFM can compress ResNet-56 on CIFAR-10 significantly (48.7% FLOPs and 57.9% parameters are reduced) with only a loss of 0.54% in the top-1 accuracy. For the practical application of edge devices, QSFM can accelerate MobileNet-V2 inference speed by 1.53 times with only a loss of 1.23% in the ILSVRC-12 top-1 accuracy.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.