Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multilingual Offensive Language Identification for Low-resource Languages (2105.05996v3)

Published 12 May 2021 in cs.CL, cs.AI, cs.LG, and cs.SI

Abstract: Offensive content is pervasive in social media and a reason for concern to companies and government organizations. Several studies have been recently published investigating methods to detect the various forms of such content (e.g. hate speech, cyberbullying, and cyberaggression). The clear majority of these studies deal with English partially because most annotated datasets available contain English data. In this paper, we take advantage of available English datasets by applying cross-lingual contextual word embeddings and transfer learning to make predictions in low-resource languages. We project predictions on comparable data in Arabic, Bengali, Danish, Greek, Hindi, Spanish, and Turkish. We report results of 0.8415 F1 macro for Bengali in TRAC-2 shared task, 0.8532 F1 macro for Danish and 0.8701 F1 macro for Greek in OffensEval 2020, 0.8568 F1 macro for Hindi in HASOC 2019 shared task and 0.7513 F1 macro for Spanish in in SemEval-2019 Task 5 (HatEval) showing that our approach compares favourably to the best systems submitted to recent shared tasks on these three languages. Additionally, we report competitive performance on Arabic, and Turkish using the training and development sets of OffensEval 2020 shared task. The results for all languages confirm the robustness of cross-lingual contextual embeddings and transfer learning for this task.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube